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20. Abstract (Continued)
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at 510 kon and N % 6(105) cm™3, Smaller scale irregularities (i.¢., small scale structure imbedded in larger
stale featuves) appesr less intense than corresponding observations in PLUMEX 1. If substantiated by more
quantitative analyses, this result could support current interpretations of east-west plume asymmetry which
suggests that the western wall of a plume (the PLUMEX [ case) is more unstable than its esstern counterpart
(the PLUMEX II case). With regard to ion composition, NO* was the dominant positive-charge component at
sititudes below the F.region ledge. Across the ledge and throughout the Fdayer up to an apogee of 580 km 0*
dominated. The ion results support a model of s Rayleigh-Taylor mode which assumes relatively small depletions
aviginating on the F-ledge with initially small horizontal extent. In this model, the local ion composition will be
! transported to higher altitudes but molecular ions will not be the dominant positive species.
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PLUMEX IXI: A SECOND SET OF COINCIDENT RADAR AND :
ROCKET OBSERVATIONS OF EQUATORIAL SPREAD-F ;

I. INTRODUCTION

The coordinated measurements of equatorial spread-F
conducted during July 1979 at the Kwajalein Atoll involved

the launch of two instrumented rocket payloads designed to

S e etk ¥

probe the detailed "in situ" structure of the turbulent

ionospheric plasma. The first launch operation (PLUMEX I;

%

17 July 1979; 0031:30.25 LT) was conducted during the late

Ve

phase in the development and decay of spread-F. The associated

BB RS

results and discussions of ground-based and rocket-bormne

diagnostics have been presented in companion papetll’z. The

e

- second rocket (PLUMEX II: 23 July 1979; 2157:30 LT) wvas
launched into the mid-phase of well-developed spread-F,

i.e., a ground-based ionosonde showed full frequency and

R MO M A TR e
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range spread while the Altair radar maps of meter size
K irregularity contours displayed backscatter plumes that

penetrated to the topside F-layer and continued rising with

time. We present here the initial PLUMEX 11 observations of
. radar plumes and the "in situ" measurements of the rocket-
borne plasma probes and mass spectrometer. The results are

then compared with PLUMEX I.
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II. EXPER IMENTAL RESULTS

A. Ionospheric Conditions and Radar Maps

By 2000 hr LT on the night of the PLUMEX II launch,
ionograms showed that the virtual height (h'F) of the F-

layer had risen at an average rate of 12 meters/sec to an

e m e

altitude of 350 km. At that point vertical drifting ceased
and shortly thereafter fulllrange spread-F was observed.
The virtual height remained comstant until 2130 hr LT, when
upward drifting again commenced at an average rate of 18
meters/sec. With full-range spread-F still in effect and
with the F-layer still drifting at an upward rate near 18
meters/sec the PLUMEX II rocket was launched (0957:30 UT on
day 205; 2157:30, 23 July 1979, LT).

Operating at 155.5 MHz (radar backscatter from 1 m
field-aligned irregularities) the Altair radar executed
consecutive magnetic east-west scans in a plane that included
the upleg penetration of the rocket trajectory. Figure 1
presents the contours of constant backscatter strength3

plotted in increments of 10 dB, ranging from 0 dB (domain of

small dots) to 50 dB (solid black). The first panel in

; 1..“;4

Figure 1 shows backscatter returns extending from 350 to

1000 km, with the most intense region (50 dB level) centered

at 635 km. A measure of horizontal and vertical drift
velocity can be achieved by focussing on features "a" (the

50 dB region at 635 km) and "B" (the 20 dB region at an

ool o RN st
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altitude of 550 km, and 125 km west of Altair in the first
panelf. In the 135 sec time lapse between the radar measure-
ments in panels 1 a;d 2, the observations showed that (Va (hor),
Vc (vert)) v (290 m/sec, 170 m/sec) and (YB (hor), VB (vert))

N (300 m/sec, 150 m/sec). The results can be interpreted as

an average magnetic west-to-east plume drift velocity of 295
m/sec (about 130 m/sec faster than corresponding observations

in PLUMEX I) with a corresponding average upward vertical

drift velocity equal to 160 m/sec. (Note that ionograms

showed h'F moving upward at an average rate of 18 m/sec
throughout most of the time encompassed by the radar maps in
Figure 1. Therefore, one could conclude that the plume was
drifting upward at a rate of 142 m/sec relative to the F-
layer bottomside.) In the 124 second inter§a1 between
panels 2 and 3 the average magnetic west-to-east drift
velocity was considerably lower, with a rate at 100 m/sec.
During this same interval the average vertical drift velocity
increased to 270 m/sec (252 m/sec relative to the bottomside
F~-region).
B. Rocket Profile and Comparison with Radar

The rocket payload that was launched into the spread-F
conditions depicted in Figure 1 carried, among other instru-
ments, a quadrupole ion mass spectrometer and a pair of
pulsed plasma probes (See Ref. 2 for instrument details

and the payload configuration). The pair of pulsed

probes simultaneously tracked ion and electron saturation
currents while generating conventional Langmuir probe

charactcriaticlz. Figure 2 displays the upleg measurements

R R N e
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of relative electron density as observed by electron satu-
ration currents I; and corroborated by simultaneously measur-
ed ion saturation currents. Because ion and electron satu-
ration currents have sgsignificantly different sensitivities

to velocity, sheath and magnetic field effects, variations

in one polarity current not corroborated by the other were
attributed to the various aspect sensitivities and excluded
from Figure 2. This approach not only facilitates quick-look
analysis and established credibility in the interpretation

of the curves as relative electron density profiles, but also
proved to be a valuable technique for eliminating the other-
wise degrading effects of uncontrolled payload tumple and ACS
jet firings that resulted from the failure of payload sepa-
ration from the rocket motor in PLUMEX II. The ordinate in
Figure 2 has a linear scale for time-after-launch with

altitude superimposed at 50 second increments.

The profile shows that the payload entered the very
bottom of the F-layer at t Y 145 sec (z N 340 km), a point
designated "A" in Figure 2. From there to an apogee near
581 km (t = 390 sec) the "in situ" probe measurements revealed
a number of irregular structures, all contiguous and co-~
located on the bottomside gradient between points "B" and
"C" in Figure 2. From the F-peak to the topside apogee of
581 km there were no "in situ" observations of macroscale
depletions or smaller sc;le irregularities as reported in
PLUMEX I (Ref. 1).

The payload's upleg trajectory has been superimposed on

the radar maps in Figure 1. With regiéno A through E (and

4
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their associated times of observation) identified on the

panel best matched for time coincidence. A step-wise comparison
of "in situ" observations (Fig. 2) with the radar maps shows

the following correlations:

Point "A" in Figures 1 and 2 corresponds to the lowest
position of the bottomside F-layer, a result which co-
locates the very bottom of the F-region radar returns with
the very bottom of the F-region ledge. Before PLUMEX I and
II (an identical correlation was found in PLUMEX I) there
were no data to determine their co-location or lack thereof.

The transition from locations A to B is marked by a 20
dB increase in radar backscatter energy, while region B to
C is marked by a relatively constant domain of backscatter
energy.

Observations at D and E occur along the eastern "wall"
of the plume and encompass an altitude domain stretching from

the F-layer peak near 500 km to a topside altitude near the

vehicle apogee of 580 km.

Figure 3 presents the up-~ and downleg profiles of
relative electron density as measured by "in situ" probe
baseline electron saturation currents. (The integrity of
the downleg profile was established by the same procedure
utilized in Figure 2.) A comparison of the profiles shows
the downleg results more representative of an undisturbed F-
region, a result consistent with the rocket's west-to-east
movement relative to the radar plume. This relative motion
(approximately 160 m/sec) carried the rocket payload into

the undisturbed F-region just to the east of the observed
8




radar plume (i.e., into the white region on the eastern edge ]
of the first panel in Figure 1).
A comment is in order with regard to the up- and downleg

altitudes that have been superimposed at 50 second intervals 3

Lo

in Figure 3. 1In particular, attention is directed to the .

locations of the very bottom of the two F-region ledge

observations, 340 km upleg and 305 km downleg. Because of

IR

the 9° dip in the local geomagnetic field the downleg observation

at 650 sec corresponds to 338 km when projected along the

s sl

magnetic field line to the payload position at 145 sec up-

leg, & result showing virtually no net movement of the ledge

between the up and downleg observations. (We note that at

the time of launch ionograms showed h'F rising at an approximate

rate of 18 m/sec. This vertical drift then reversed near

the middle of the flight, establishing consistency in rocket

and ionogram results.) v
With regard to ion composition, we note that the molecular

ion NO+ was the dominant positive-~charge component at altitudes

up to 340 km, the very bottom of the F-region ledge ("A" in

o h -

Figure 2)., At all altitudes above 340 km 0+ was observed to

be the dominant fon (See Ref. 4 for detailed ion profiles).

I1I. CONCLUSIONS AND COMPARISONS WITH PLUMEX I J
PLUMEX II1 was the second in a two-rocket operation that

successfully executed space- and time-coincident measure-~

ments of equatorial spread-F. Comparison of results and
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can be achieved by an analysis of the upleg electron density
profiles observed in the two operations (PLUMEX I and II).
These profiles are presented in Figure 4 with specific

features and conditions of observation listed in Table 1.

A COMPARISON OF CONDITIONS AND OBSERVATIONS
IN THE DNA/PLUMEX CAMPAIGN

focus on differences in prevailing ionospheric conditions

TABLE 1

PLUMEX ] PLUMEX 11

Launch Time (LT) 17 July 1979; 0031:30.25 23 July 1979; 2157:30
Spread-F Late time; topside radar | Mid-phase of well-developed
Conditions plume in decay phase spread-F. plumes penetrating

to topside and rising with time

Fahoex 375 Km 510Km
F-bottom 240 Km 340 Km
Nmax 1.3 (10%) ecm™3 = 6(10°) cm™3
L (Gradient scale 4.0 Km 8.6 Km

length)
T, 1350 (£250)°K TBD
Dominant F; lon o+ o+
Number of Depletions 4 Only Bottomside Spread-F

(AN,/N? > .60)
Maximum Depletion 0.90 = 0.75

(AN,/ND) ax (An estimate of bottomside

macroscale structure)

*In Situ® Irregularity +80% fluctuations Fluctuation levels are much

Strength on bottomside gradient | less intense than PLUMEX 1
Ion Signatures in Holes N*/0* ratio None
Plume Penetration Western "wall® and Eastern "wall"

by Rocket plume "head’
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Spread-F conditions. PLUMEX I was conducted during the

late phase in the development and decay of spread-F. Specifically,
the rocket was launched at 0031:30.25 (LT), a full 3 hrs
after the occurrence of full range spread and only 30
minutes before its disappearance from ground-based ionograms.
Major plume features were relatively stable with respect to 4
vertical drifts, and the most intense regions of radar
backscatter were beginning to decay.

The PLUMEX II conditions were substantially different,
with the rocket having been launched into the mid-phase of
well-developed spread-F, i.e., a ground-based ionosonde

showed full-frequency and range spread while the Altair ;

radar maps of meter size irregularity contours displayed

backscatter plumes that penetrated to the topside F-layer

and continued rising with time. The payload was launched 1%

Py
i

hours after the onset of full range spread and an estimated

two hours before decay.

F-region profiles and "in situ" irregularities. 1In the

PLUMEX I operation, a number of major depletions (ANe/N: < 0.90)

N
were distributed throughout the F-region with the F-peak

-3 .+

max_ 3.3 (10%) en™? (* 10%). The

(thmax) at 375 Km and Ne

very bottom of the F-layer (F-bottom) was at 240 km and the b

macroscopic gradient scale length L i (N:) 1 dN:/dz of ;
the bottomside ledge was 4.0 Km. (The macroscopic L was

calculated from a zero-order fit to the bottomside ledge .

between 10-2 and 10-1 N:ax.) The electron energy distribution

was characterized by Te = 1350 (t250)°K with no obvious
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signatures of energy redistribution in and around the depletions.
The most intense "in situ" irregularities (i.e., smaller
scale structure imbedded in the larger scale depletions)
occurred near 275 km on the bottomside ledge (t 80% fluctuations
about an estimate Nz). The power spectral density in this
region of intense irregularities on the bottomside was
dominated by a knz'5 power law2 over the intermediate wave-
length domain k = 27/1 km to k = 27/25 m. This result
supports the role of the collisional Rayleigh-Taylor instability
in generating intermediate wavelength irregularitie82’5’6
during the occurrence of equatorial spread-F (See References
1l and 2 for additional details.)

The PLUMEX II data have not received the same level
of analysis already applied to the first operation, a result
largely due to the complications of uncontrolled payload tumble
and ACS jet firings that arose from a subsystem failure to
separate the science payload from the second stage rocket
motor. However, there are a number of conclusions that can
be drawn at this time. In the upleg density profile of the
PLUMEX II flight (Fig. 2), F-region ifregularities were
observed only on the bottomside gradient, with the F-peak

Y

max) at 510 km and N:ax N 6(105) cm-3. In PLUMEX II the

(th
bottomside gradient was aubstantialiy softer than in PLUMEX 1
with F-bottom at 340 km and L = 8.6 km. A review of analog
records (uncorrected for tumble and jet firings) indicates

that smaller scale "in situ" irregularities were much less

intense than corresponding observations in PLUMEX I. This
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result could support current interpretations (e.g., Ref. 7)
of east-west plume asymmetry which suggest that the western
wall of a plume (the PLUMES I case) is more unstable than
its eastern counterpart (the PLUMEX II case).

Ion composition. PLUMEX I and II provided the very

first vertical profiles of ion composition during the occurrence

of equatorial spread-F. The data are particularly relevant

to the subject of plasma bubble formation, vertical transport

and ion signatures of source domains for topside F-region

depletions. Previous "in situ" measurements of ion composition

within plasma depletions came only from satellite~borne mass
spectrometerss-lo with results that suggested that topside
holes formed at lower altitudes, where [N0+], [O?] > [O+],
and rise to greater heights maintaining (to first-order)
their original ion composition. In a final analysis, the
composition can be different because of dependence on the
bubble formation process, the source domain and the bubble
age as manifested by time-dependent chemical processes.

In both PLUMEX operations o+ was the dominant F-regio.
ion down to the very bottom of the F-ledge (F-bottom). At
altitudes below F-bottom, molecular ions dominat:d with a
scale height approaching infinity. (Detailed ion chemical
results and analyses th t go beyond discussions presented

here are available in Reference 4.) The connection of

this observation to topside bubbles and instabiiity mechanisms

is as follows:

10
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The Rayleigh-Taylor and E x B gradient drift instabilities,
which have been proposed for bubble formation, require a
steep bottomside gradient. However, the PLUMEX results show
that the molecular ions are dominant only at altitudes below
the bottomside F-region gradient, where scale heights are
very large and inhibit the instability process. If the bubble
does indeed form on the F-region ledge, and if it transports
only local ions to higher altitudes, then molecular ions will
never dominate topside depletions. This apparent dichotomy
has a number of explanations:

(a) Relatively small depletions (i.e., ANe/Nz by 0.9)
originating on the F-ledge with initially small horizontal
extent can transport the local ion composition to higher
altitudes by the Rayleigh-Taylor process; but molecular ions
will not be the dominant positive species. 1Instead, the
[ﬁﬁ/[0+] ratio will indicate the original source domain as
suggested by McClure et al.8 and Szuszczewicz et al.l, and
discussed in detail by Narcisi and Szuszczewicz4.

(b) For molecular ions to be dominant in a topside F-
region depletion it appears that one of two mechanisms must
apply: (i) An initially small depletion (i.e., ANe/NZ 2
0.9) of large horizontal scale size can result in much
higher depletion levels (e.g., References §-10) by fringiag
fields that drawup the lower densities and molecular ions
that populate altitude regimes lower than the sight of the
initial perturbation. This mechanism has heen studied

by Zalesak and Ollnkovll and appears in substantial agreement

with observations.

P ] W R R




(c) An alternate mechanism for molecular ion dominance
in topside depletions has been proposed by Chim and Str.uslz.
They suggest that plasma bubbles in the nighttime equatorial
ionosphere originate as wind driven waves at one of the
highly variable density gradients below 200 km, rather tham
at the bottomside F-region ledge. Once the bubble is formed,
with the low densities and molecular ion dominance characterized
by the lower altitude, it can propogate into the bottomside
F-region and provide the initial perturbation required for
the onset of the Rayleigh-Taylor model3713,

Current analyses of PLUMEX ion composition results

support conclusion "a" as the operating principle on the

nights of "in situ" investigations. This does not negate
"b" and "c" as candidates for other conditions, but it does
leave open the question for further experimental tests.
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ALTAIR SCAN TIME (SEC AFTER LAUNCH)
247 270

ALTITUDE (km]

-100 0 100 -100 0 100 -100 0 100
MAGNETIC EAST DISTANCE FROM ALTAIR [km]

Fig. 1 - Backscatter intensity contour maps (contours are in 10
dB increments with darkest domain, e.g.,a , at the 50 dB level)
with superposition of the rocket trajectory. The times identi-
fied with observations "A" through "F" are included for a more
complete representation of temporal correlation with the success-
ive radar scans. Domains "a" and "8" are references for plume
dynamics (see text).
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I. INTRODUCTION

Accumulated information regarding equatorial spread-F

MR Sl s

L8 s

phenomena has pointed toward a definite causal relationship

et

between the large scale depletions (also referred to as
holes, bite-outs, or bubbles) and range-time-intensity
observations of large ionospheric domains with strong radar
backscatter returns from the much smaller (meter size)
irregularities (called plumes). Woodman and LaHoz (1976)

and Kelly, et al. (1976), have suggested that a plume was

MDY 3 TN N e A ORI s

due to a rising bubble leaving behind a wake of short wave-
length irregularities. Another proposal (Szuszczewicz,

1978), arising from considerations of chemistry and transport,
suggested that the radar returns originate across the density
gradients at the boundaries of large scale depletions. This
concept is supported by the work of Ossakow, et al. (1979)
where it is inferred that a bubble rising through the F-
layer will bifurcate on its topside and produce shorter and
shorter wavelength irregularities, either by a cascade or
two-step mechanism. Experimental evidence to verify this

position has come from an Altair radar experiment (Tsunoda,

i
|
]
|

1980a) which showed that backscatter maxima tend to occur at
altitudes corresponding either to the electron density
minima or the upper wall of the plasma depletion. More
recently, Tsunoda (1980b) concluded that during the decay
phase of meter scale backscatter plumes, the radar returns

were maximum on the upper walls of the plasma depletions.
Note: Manuscript submitted February 22, 1980.




Efforts to examine the exact relationship between radar

B T it Tt 3

plumes and ionospheric depletions by performing simultaneous

"in situ" and ground-based radar observations (Kelly, et al.

P e

i 1976; Morse, et al. 1977) have been limited to conditions of
| bottomside spread-F and required extrapolations in space and
time to establish correlations. As expected for bottomside

spread-F, the "in situ" probes only observed plasma fluctuations ) j

g P CANAPRCE SN W 1S L i

along the portion of the trajectory below the F-layer peak

density while the ionosphere above the peak was quite smooth.

B T

The ion composition within the depletions has also been
the subject of a number of investigations. Typically,

satellite mass spectrometric observations (Brinton et al.

1 7w R S N

1975; McClure et al, 1977; Szuszczewicz, 1978) have shown
that the ion composition can be vastly different inside and

outside the bite-outs. Fe' ions may be enhanced or depleted,

with molecular ions usually more abundant inside the bite- ©
out. Brinton et al. (1975) and McClure et al. (1977) have

found o depleted by as much as a factor of 103 to a concentration

below that of No'. The molecular ion No* was found to be

dominant in the O+ depleted region, with the bite-outs

varying from a few kilometers to tens of kilometers in

width. An analysis of the Atmospheric Explorer-C data

(Szuszczewicz, 1978) suggested that a given chemical volume

on the bottomside F-layer ([N0+]. [02+]>[o+]) could move .

upward through a stationary neutral atmosphere and
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appear at higher altitudes as a bite-out in the local plasma
density. As the bottomside F-region plasma cell moved up-
ward, the relative magnitudes of its ionic components would
depend on transit time and on altitude through the height
distribution of the neutral gases. This model was consistent
with the satellite observations as well as the computational
work of Scannapieco and Ossakow (1976).

In a continuing effort to understand the detailed
relationships involving large scale plasma depletions,
meter-size irregularities and associated ion-chemical
signatures, a rocket payload instrumented with a plasma
diagnostics complement (plasma probes, electric field
sensors, mass spectrometer and a two-frequency beacon
experiment) was launched into the topside F-region ionosphere
above Roi-Namur in the Kwajalein Atoll (4.3° N dip latitude).
The investigation was part of a major effort which coordinated
rocket and Altair radar observations with bottomside soundings
and ground-based photometric measurements of F-region winds.
We present here the initial coordinated observations of the
radar plumes and the "in situ" measurements of the rocket-
borne plasma probes and mass spectrometer.

II. EXPERIMENTAL RESULTS

A. Ionospheric Conditions and Radar Maps

By 2100 hr LT on the night of the rocket launch,
ionograms showed that the nominal bottomside of the F-layer
had risen to an altitude of 400 km. At that point, the F-
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layer began drifting downward with an almost immediate
occurrence of spread-F. The downward drifting continued (as
did the spread-F) at an approximate average velocity of
10m/sec with the bottomside F-layer having descended to an
altitude near 270 km when the rocket was launched (12:31:30
UT on day 198; 00:31:30, 17 July 1979, LT).

Operating at 155.5 Mhz radar backscatter returns from
1 m ionospheric irregularities) the Altair radar executed

consecutive east-west scans in a plane that included the

penetration of the rocket's upleg trajectory. Figure 1
presents the contours of constant backscatter strength
plotted in 10 dB increments. (For details of the Altair
system see Tsunoda et al., 1979). The first panel in Figure j
1 shows a backscatter plume just moving out of the radar's
eastern-most field of view. That plume, with its highest

and most intense backscatter region near 510 km, is connected
to backscatter domains extending down to the bottomside of
the F-layer. The second panel, with a center scan time 137
seconds later than the first, shows the intense backscatter
region further to the east, having drifted there with an
approximate west-east velocity of 160m/sec. In the third
panel the plume has nearly moved completely out of the
radar's field of view and the intense region near 510 km has
decayed.

B. Rocket Profile and Comparison with Radar

The rocket payload that was launched into the spread-F
conditions depicted in Figure 1 carried a gquadrupole ion




mass spectrometer (from the Air Force Geophysics Laboratory)
a pair of pulsed plasma probes (from the Naval Research
Laboratory), vector electric field sensors (from Utah State
University) and a two-frequency beacon experiment (SRI 3
International). The pair of pulsed probes simultaneously
tracked ion and electron saturation currents while generating
conventional Langmuir probe characteristics (see e.g.,
Szuszczewicz and Holmes, (]977). Figure 2 displays the upleg
measurements of relative electron density as presented by
correlated ion and electron saturation currents. The
ordinate has a linear scale for time-after-launch with
altitude superimposed at 50 second increments. (Because ion
and electron saturation currents have significantly different
sensitivities to velocity, sheath and magnetic field effects 1

(e.g., Szuszczewicz and Takacs, 1979) data points not corroborated

ESRC T s L e S

by both polarity currents were attributed to the various
aspect sensitivities and therefore were not included in

Figure 1. This approach facilitates quick look analysis and

:
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establishes credibility in the interpretation of the curves
as relative electron density profiles.)

The profile shows that the payload entered the very
bottom of the F-layer at tg 103 sec (23 240 km). From that
point, to an apogee near 590 km, the "in situ” measurements

révealed a number of plasma depletions depicted in the

figure as regions C, D-E, F-G, H-I, and J-K. The largest
depletion was in region H~I where AN‘/Ng Y o0.85 with a half-




minimum vertical extent approximatley egqual to 23 km.

In the regions of the large-scale depletions, the "in
situ” measurements also revealed much smaller scale irregu-
larities. The central plot of "irregqgularity intensity" in
Figure 2 identifies the regions of smaller ifregularities
and attempts to establish a preliminary quantification for
their intensity. ("Irregularity intensities" were scaled
directly from probe current fluctuations about an estimated
mean. As an illustration, the -4.5 to +4.5 irregularity
intensity within region C represents a factor of 9 in the
largest peak-to-peak fluctuation measured in that region.

(If vehicle potential, plasma temperature and ion composition
were constant during the irregularity measurements, then

I « Ne.) More quantitative analyses along with power spectral
densities will be determined for future publication.) The
results show that the most intense irregqularities occurred

on the bottomside gradient (region C) with corresponding
measurements at all other altitudes at a much lower levél.

We note that the fluctuations in the largest depletion
(region H-I) are smaller than those at "C". The data also
indicate that the more intense fluctuations occur on positive
density gradients (C,D,E, and I).

The payload's upleg trajectory has been superimposed on
the radar maps in Figure 1l with domains A through K (and

their associated times of observation) identified on

80
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the panel best matched for time coincidence with the radar
results. A step-wise comparison of "in situ" irregularity
observations (Fig. 2) with the radar maps reveals some
interesting correlations:

Point "A" corresponds to the lowest position of the
bottomside F-layer, while "B" is midway up the steep bottom-
side and very near the point of maximum positive density
gradient. Region "C" is at the boundary of the third highest
backscatter level (30 dB), and appears to represent the mid-
phase development of large scale Rayleigh-Taylor turbulence.
Observations at "D", "E", "F" and "G" occur along the western
"wall" of the plume, and encompass an altitude domain
identified with the F-layer peak. Point "G" represents the
payload's entry into the large scale depletion centered near
240 sec (490 km) on the upleg trajectory. The payload's
transit from "C" to "I" is marked by a positive gradient in
backscatter radar energy, with the maximum return occurring
on the topside (region "I" and above) 6f the H-I depletion.
Above the large scale depletion, observations "K" and "J"
begin to track the western "wall" of the plume in the topside
F-region.

C. Ion Composition

o' was observed to be the dominant ion component through-
out the entire F-region. From points of view focussed on

turbulencé and transport the chemical constituency of two

regions are worthy of note:




In the H-I depletion on the topside F-layer the mniajor

observed ion components were to*t1 ¥ 0.998 Ng: [N+] 2 0.002

4

N, and ((no*) + [02*1)< 107"N_. In the adjacent domains

there was a different distribution of ions, i.e., outside

Y 0.992 N_. N1 ¥ 0.007 N, and

the depletion we found [O+]
(inot) + [02+])< 2 (10-5) N, a distribution typical of the
zero-order ionosphere at those altitudes.

The ion composition within the H-I depletion suggests
that it may have originated at or near the bottomside F-

2 [0+] H-I° Such a region exists at 112

region where [0+]
sec (23262 km) on the upleg trajectory where it was observed
that [N0+] and [0;] were 1-2% of Ne and the [O+]/[N+] ratio
was nearly identical to that observed in the H-I domain.

This points to Nt as a long-lived tracer ion for bottomside
source regions of topside depletions. The fact that the

source region levels of Not and .02+ have not been preserved
in the topside hole results from their losses by dissociative
recombination and a simultaneous loss in production by ion-
atom interchange and charge exchange reactions since [Nzl

and [02] decrease markedly with altitude. The longer it

takes a bottomside depletion to move upward into the topside F-
layer, the more likely the elimination of molecular ion
signatures when [O+] N Ng >X[No+] + [o;]). In the case of

the H-I depletion, a vertical transport time greater than

360 seconds would account for the molecular ion deficiency.

(To arrive at this estimate we assumed an instaneocus dig-

placement of the bottomside ion composition to the H-I
32
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altitude and calculated that in about 6 minutes the molecular
ions would decrease to a concentration less than 5 cm'3.)
This time estimate suggests an upper limit of about 600
m/sec for the depletion's average vertical drift velocity, a
value which is consistent with the wide range in predicted
bubble rise velocities (Ossakow and Chaturvedi, 1978;
Ossakow et al., 1979; Anderson and Haerendel, 1979). (While
this conclusion is correct in its own right, we note that
Altair data prior to that shown in Fig. 1 reveal that the

backscatter plume was at the nominal altitude shown in

Figure 1 for more than 30 minutes.)

The second region of special note is "C" where it was
observed that 01 followed the intense plasma density
fluctuations while the molecular ions No® and 02+ (rep-
resenting @0.5-1.0% Ne) did not. Such a result has a
possible explanation in an assumption that requires steady
state chemical equilibrium in an o' dominant domain.
(Molecular ions in region "C" can achieve equilibrium
concentrations in less than 10 minutes.) Under this condition,
molecular ion concentrations are independent of O+ and vary
only with the scale height of the neutral atmospheric
constituents N, and 0,- The observations conform to this
model with a standard zero-order atmospheric distribution,
suggesting that neutral atmospheric turbulence is not a
major source for the observed plasma fluctuations on the

bottomside F-region.
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D. North-South Extent of the Depletions

Figure 3 presents the up- and downleg profiles of
relative electron density as measured by "in situ" probe
electron-saturation currents. (The integrity of the downleg
profile was established by the same procedure utilized in
Figure 2.) A comparison of the profiles shows very good
agreement in the two observations of plasma depletions.
Attention is directed to the large scale depletion of the
topside (region H-I):

The up- and downleg measurements of the large topside
hole were separated in time by approximately 340 seconds and
in range by 112 km. During this 340 second interval Altair
radar measurements of plume movement showed an average
easterly drift at a 160 m/sec rate resulting in a total
eastward displacement of 54 km. Adding 14 km to account for
depletion alignment along the magnetic meridian (9°E of true
azimuth) yields a calculated total E-W displacement of 68 km
between the times of the two rocket observations of the
hole. During this time intexrval the payload had an eastward
range velocity approximately equal to 215 m/sec, resulting
in an east-west separation in the up- and downleg observations
of region H-I equal to 73 km. From this we can conclude
near-perfect up- and downleg targeting of the hole. The
agreement in the two observations of the H-I domain there-
fore suggests that the depletion is aligned with the magnetic
field for at least 112 km. (Parallel arguments dealing with

the depletion at (t,Z%) 2 (1538, 350 km) would suggest a

field alignment at least as great as 163 km, while the

84




B s ST

A (il e D& 1 s

P it A

s b e - R L o A

B LRGN IV S o

Sl RO

radar observations of Tsunoda [1980b] showed plasma bubble
alignment can extend to 1100 km.)

III. COMMENTS AND CONCLUSIONS

Space- and time coincident measurements of equatorial
spread-F conducted during July 1979 at the Kwajalein Atoll
have yielded the first definitive observations of small
scale irregularities (€l meter ) and large scale plasma
depletions as measured independently throughout the F-region
by ground-based radar and "in situ” plasma instrumentation.
Preliminary analysis of the results leads to the following
comments and conclusions:

(a) Within a large-scale, decay-phase, topside F-layer
depletion where "in situ" irregqularities were reduced
(compared with the depletion's topside wall), the radar's
backscatter energy was also reduced (compared with the top-
side wall). This result suggests the co-location of maximum
radar returns with the upper regions of a depletion (its
topside wall and above) and not with the depletion minimum
or bottomside wall.

(b) The "in situ" measurements established field
alignment of large scale depletions to distances at least as
great as 163 km. This result supports the topside sounder
data of Dyson and Benson (1968), the airglow observations of
Weber et al., (1978), the recent radar measurements of
Tsunoda (1980 a,b) and the assumption of depleted flux tubes
in the theoretical considerations of Anderson and Haerendel

(1979).
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(c) Ion composition measurements within a topside

depletion showed little evidence of bottomside molecular

L e

tracer ions (i.e., No+ and 02+). This result points to the
requirement for rapid bubble rise velocities and/or low

4 cm™3) within the hole if the

plasma densities (Ne << 10
bottomside molecular ion composition is to be maintained as
bubbles drift upward through the F-region (Szuszczewicz,

1978) . However, the measurements did reveal N+ as a longer

LA N i N i R SR B 4 i o

lived tracer ion. This helped identify the lower altitude
source region to be on the bottomside F-layer gradient.

(d) Strong irregularities on the bottomside F-region

- OGS  nh

gradient showed 0+ following large scale density fluctuations

while the molecular ions NO' and 02+ were relatively constant.

SaME A L M e

Preliminary analysis of this result suggests chemical
equilibrium and eliminates neutral atmospheric turbulence as
; a major source of the bottomside plasma irregularities.

(e) An estimate of bubble rise velocity was arrived at
by preliminary ion chemical analysis of composition within
the hole. The analysis suggests an upper limit of 600 m/sec
for the average vertical velocity of an 85% depleted domain
(85% on the topside, 100% at the F-peak) as it drifted
upward from its bottomside source region near 260 km to the
topside F~layer at 490 km. This upper limit is consistent
with the wide range in predicted values (Ossakow and Chaturvedi,

1978; Ossakow et gl.,'1979; Anderson and Haerendel, 1979).
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APPENDIX B
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Equatorial Spread F:
"In Situ" Measurements of Electron Density
Temperature and Density Fluctuation Power Spectra
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EQUATORIAL SPREAD F:
“IN SITU” MEASUREMENTS OF ELECTRON DENSITY
TEMPERATURE AND DENSITY FLUCTUATION POWER SPECTRA

I. INTRODUCTION
The DNA/PLUMEX rocket payloads launched into the equatorial

ionosphere during the July 1979 campaign carried a plasma

& diagnostics complement that included a quadrupole ion mass

i spectrometer, a pair of pulsed plasma probes, vector electric

IS s S SIVB Il SN s S Tan e Sy e

¥ ’ field sensors and a four-frequency beacon. The pair of

pulsed plasma probes not only provided simultaneous measure-

s L L -

ments of electron density Ne’ temperature Te’ and density
fluctuation power spectra Pn(k), but also provided the
capability for a running measurement of relative variations
in mean ion mass <M1>.

The measurements of Ne and Te form the basic information
on the laminar coundition of the ionosphere, allowing for the
determination of the ionospheric plasma response to varying
geophysical conditions (solar and magnetic activity, winds,
gravity waves, etc.) and the detection of triggering mecha-
nisms (e.g., steep density gradients in Ne) for ionospheric
irregularities.

The measurements of SNQG-Pn(k)) yield important test
information for signal channel models as well as candidate
instability mechanisms (e.g., collisional drift modes, ExB
and Rayleigh-Taylor) which might be active in the ionospheric
plasma.

In this paper we describe the experimental technique,
payload configuration, launch scenerios and present additional

experimental results wvhich complement companion plpersl'z.

Manwseript submitted June 13, 1980
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I1. TECHNICAL OVERVIEW

Introduction. The pulsed plasma probe technique (P3 is

the designated acronym) is a unique diagnostic tool capable

of high spatial and temporal resolution of plasma parameters.
The instrument is a Langmuir-type probe using a special
electronic procedure for generating the current-voltage
characteristic3’4. The result is greatly improved reliability
and expanded versatility in Langmuir probe measurements. As

a diagnostic tool, the P3 technique reduces commonly found
distortions in derived electron densities and energy distributio:
functions. A unique feature of the technique is its ability
to measure simultaneously the electron temperature, density,
and the density fluctuation power spectrum. Successful
applications of the P3 technique include not only rocket but

also satellite 3,6 7

and laboratory beam-plasma studies’ of
turbulent charged-particle environments.

Figure 1 shows two types of probe operation. Figure
1(A) depicts a linear sawtooth sweep voltage which represents
the conventional approach to Langmuir probe operation wherein
some form of continuous voltage sweep is applied between
voltage limits V_ and v,. Fig. 1(B) shows the pulse-modulated
sweep which has been utilized with P3. The voltage pulses
which follow the sawtooth envelope generate the probe's
current-voltage characteristic. During the interpulse
period, at constant voltage VB, the collected probe current

IB provides a direct measure of variations in the probe-

plasma system. The pulse duty-cycle is short so that the

48
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probe rests at its baseline potential VB for a period much
longer than the pulse width. Fig. 2 shows pulse and base-
line durations identified as Ton and TB, respectively. So
that sweep voltage transients will not affect the vqlue of
probe current, the probe current is sampled at the termination
of subinterval T, within the sweep pulse and at the center

i
of the baseline interval TB‘

With Ton much shorter than either Tg OT the time constant
of the probe surface contamination layera, the pulse procedure
will maintain the surface condition and associated voltage
drop at a more nearly constant level than when using a
continuous, slowly-varying sweep voltage. The resulting
current-voltage characteristic can then be unfolded from the
plasma density fluctuations “IB) so that the electron
temperature and density are determined uniquely. In addition,
the IB-values provide the raw data from which density
fluctuation power spectra are determined.

Payload configuration 4527P3 characteristics. A pair

of pulsed probes were diametrically extended from the
forward end of the rocket payload (Fig. 3). The sensing
elements constructed from tungsten wire, were isolated from
their extension booms by coaxial guard electrodes driven at
the same potential as the probes themselves. One of the
probes, defined as the I-probe, operated with Vak-lv,
yielding net ion baseline current I;. The other probe,
defined as the E-probe, operated with VB% + 2v, yielding

net electron baseline current Ig. Both probes generated

49




complete current-voltage characteristics in Tg iy 400 msec,

yielding absolute values of Ne and Te at an approximate 2.5

Hz rate. Maximum IB sampling occurred at 2048 Hz, resulting
in 0.5 meter spatial resolution for relative electron density
fluctuations at a vehicle velocity of 1 km/sec.

Probe electrometers were set to operate over a dynamic

range extending from 6(10—10) to 2.5 (10-4) amperes, with

automatic switching over 8 ranges maintaining 9 bit accuracy
for all anticipated ionospheric conditions. The automatic

ranging is best illustrated in Figure 4, an actual in-flight
analog record of telemetry channel outputs for the probe %
currents and applied voltages, the roll magnetometer for
magnetic aspect determinations, and pitch, yaw and roll
monitors on the ACS jets. The data sample presented in
Figure 4 was collected when the payload was 55 seconds into -
.flight while the probe electrometers were being driven
through a load resistor for calibration. The probes'

operation alternated between a fixed-bias mode and a pulsed-

sweep mode, with absolute currents determined by a simple

algorithm which coupled the switching 0-5 v TM signal on PCM

'
e S MR

channel 26-1 with the sweep current range monitor on channel
27-1. The record format in Fig. 4 helped provide field- K
estimates of density profiles without distortions of magnetic %
aspect sensitivities and a.titude control jets.
I11. RESULTS

Density profiles and irregularity structures. By

9 P.M. (LT) on the night of the first rocket launch (PLUMEX I)

the bottomside of the F-region had risen to an approximate
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altitude of 400 km., The F-region then began a downward

o somiea it 3

k= s500. -

drift with a simultaneous onset of spread-F., The downward
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drifting and spread-F conditions continued, and when the

g e
e

f bottomside F-layer had descended to an altitude below 300 i

km, the rocket was launched (12:31:30 UT on day 198; 00:31:30,

-2 st . 3 A

17 July 1979, LT).

Figure 5 displays the upleg measurements of relative

3 electron density as prgsented by correlated ion- (I:) and

i rbek s

¥ electron~ saturation I:(V+) currents. The ordinate has a
linear scale for time-after-launch with altitude super-

imposed at 50 second increments. Because ion and electron

saturation currents have significantly different sensitivities ;
8

to velocity, sheath and magnetic field effects , variations

in Ii and I:(V+) not mutually corroborated were attributed

B
to the various aspect sensitivities and excluded from Figure

|
H
i

- et AL i 7.

5. This approach facilitated analysis, reduced computer 1

time, and established credibility in the interpretation of

§
k]
Ei
¥

the curves as relative electron density profiles.

The results in Figure 5 show that a number of major

depletions (ANe/N: < 0.9) were distributed throughout the F-
region. Each of the large scale depletions (identified
alphabetically) has its own distribution of irregularities,

illustrated in Fig. 6 by the expanded view of regions C, D,

H and I. It is clear that "C" is not a single narrow bite-

out but a collection of rather large irregular structures
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extending over a total altitude domain of about 12 k-.
(Vehicle velocity 1in region C was 2.4 km/sec.) To develop a
quantitative view of irregularity fluctuations observed in
the F-region, continuous linear detrends were executed
throughout the entire upleg trajectory. The variations
about those linear detrends were then plotted in Figure 5 as
"Irregularity Intensity", with a maximum relative scale of

+ 4. A fluctuation as great as + 4 approximately represents
a + 80% fluctuation about the linear detrend. (Correlation
of these results with macroscale gradients and Altair back-
scatter contours are discussed in a companion paperl.

Absolute density and temperature. Absolute values of

electron density and temperature were determined by conven-
tional analyses of Langmuir probe characteristics9 with
appropriate care to eliminate perturbing effects of surface

contaminationa, density fluctuations3’lo

and magnetic field
effectss. Analysis of approximately 25 characteristics were

executed over the F-layer from 340-560 km. In each case a

conversion coefficient a N [cm-3]/Ie(V+) was determined

e
so that the Ie(V+) profile in Figure 5 could be directly
scaled to absolute electron densities. This procedure

10 electrons cm-3A-1.

yielded a = (5.5 + 0.5) 10

The upleg profile has been reconstructed in Figure 7
with relative and absolute electron density plotted as a
function of altitude. The result shows the F-peak at 375

km, with a maximum density of 1.3 (10%)cm™3 (+ 10%).




Analysis of the retarding-field region of the same set
of current-voltage characteristics yielded Te = (1350 +
250)°K. with no obvious signatures of electron energy
redistribution in and around the depletions.

Intermediate wavelength power spectra. The pulsed

probe data provided an excellent opportunity for comparison

with the numerical simulationsll

of the collisional Rayleigh-
Taylor (R-T) instability at’intermediate wavelengths.
Attention 1is focused on the bottomside F-layer gradient and
region C, which is believed representative of the mid-phase
development of the R-T processl. Typically, computer

simulations employ several values for the zero-order gradient

scale length

0\_
L= __1__.d_Ne_
N° dy
e

and initialize the code with some two-dimensional perturbation

superimposed. In the work of Keskinen, et al.ll L was

selected at 5, 10 and 15 km and the perturbation took the

form 12

6Ne(x,y,t-0)

(10™%) sin (k. y) Cos (k_ x) + 2(10°%) sin (2k_ y)
N° y X , y
e
with kx and ky being the horizontal and vertical wavenumbers,
respectively. Both kx and ky vere set equal to 27/960 m in
the simulation. In addition, the computation assumed that L

was centered at 300 km.




Under actual conditions encountered in PLUMEX I (Fig 7),

the bottomside F-~layer gradient extended from 240 to 290 ka.
The question of gradient scale length can be studied in
Figure 8 where it is shown that the bottomside gradient
(encompassed in the 105-125 sec time frame) is not characterized
by a single value of L. In regionr "C" (1ll4s <t < 122) L

is seen to vary between 2 and 10 km, vhereas adjacent domains
(1108 < t < 113s and 1228 < t < 126s8) can be characterized

by L = 25 km. We would suggest that the adjacent domains

are representative of the zero-order gradient scale length
and that L = 25 km would be a more appropriate value in the
numerical simulation.

11 Jith L = 5, 10 and

In any event, computer simulations
15 km showed that linearly unstable modes saturate by non-
linear generation of verticel modes. The results yield one-
dimensional power laws (horizontal and vertical) that vary

with a spectral index (2 n in PN « k-n) between 2.0 and 2.5.

e
To explore this result within the context of region "C",

power spectral analyses were conducted over sliding intervals

of 2.4 km. The results, presented in Figure 9, show that

the dominant behavior is k-Z.S

k = 27/26m. The k-1.85 behavior at t = 116.001 sec is a

over the range k = 2%/1lkm to

result of the very sharp density gradient (see region "C" ]
Fig. 6) encompassed by the domain of the spectral analysis.
In general we would conclude that our results support ]

the numerical simulations of Kegkinen, et 11.11. We do "
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point out however that a spectral index variation from 2 to
2.5 is a rather broad domain. Further testing of this
support can be achieved with an L = 25 km simulation and a
downward drifting F-layer model that is more in keeping with
the actual experimental conditions. The F-layer time-
history can be important since unstable modes appear to
require times in excess of 4,000 seconds to saturate...a
time during which the F-layer encountered in PLUMEX I
drifted downward in excess of 40 km.

IV. SUMMARY

In each of the two rocket operations (PLUMEX I & II)
conducted at the Kwajalein Atoll during July 1979, the NRL
pulsed plasma probe performed flawlessly. General results
concerning coordinated rocket and radar measurements of
small and large scale irregularities have been discussed in
companion~papersl’2. Complementary results developed here
include:

(a) In PLUMEX I a number of major depletions (AN_/N_< 90%)
were distributed throughout the F-region, from the bottom-
side gradient centered near 260 km, through the F-peak, to a
topside altitude of 500 km. The most intense "in situ"
irregularities occurred on the bottomside ledge where gradient
scale lengths were found to vary between 2 and 25 km. The
pover spectral density in this region of intense irregularities

on the bottomside was dominated by a k-2.5

power law over
the intermediate wavelength domain k = 27/lkm to k = 27/25m.

The experimental conditions were reasonably matched to the




s

numerical simulations of Keskinen et 31.11

» and a comparison
of the two resulted in general agreement.
(b) In PLUMEX I, the F-peak was at 375 km, with u““ -

1.3 (10%) em”3

(+ 102). The electron energy distribution
was characterized by Te = (1350 + 250)°K with no obvious

signatures of energy redistribution in and around the

depletions.
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VALLEY FORGE SPACE CENTER
GCODARD BLVD KING OF PRUSSIA
P.0. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.0. BOX 1122
SYRACUSE, NY 13201

01CY ATTN F. REIBERT

GENERAL ELECTRIC COMPANY
TEMPO-CENTER FOR ADVANCED STUDIES
816 STATE STREET (P.0. DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAC
01CY ATTM DON CHANDLER
01CY ATTN TOM BARRETT
01CY ATTN TIM STEPHANS
01CY ATTN WARREN S, KNAPP
01CY ATTN WILLIAM MCNAWRA
01CY ATTN B. GAMBILL
01CY ATTN MACK STANTON

GHEQ?M ELECTRIC TECH SERVICES C0., INC.

CORT
SWRACUSE, WY 13201
01CY ATTN 6. MILLMAN

GENERAL RESEMRCH CORPORATION

SAKTA BARBARA DIVISION

P.0. BOX 6770

SANTA BARBARA, CA 93111
01CY ATTN JOE ISE R ;
0ICY ATTN JOEL GARBARINO

GECPHYSICAL INSTITUTE

UN:VERSITY OF ALASKA

FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECIRITY OFFICERS)
01CY ATTN T.N. DAVIS (UNCL OMLY
01CY ATTN NEAL BROWN (UNCL ONLY :
01CY ATTN TECHNICAL LIBRARY ]
01CY ATTK T. HALLIMAN
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6T: S‘-‘u'-.’:’IA‘ INC.

ELECTCNICS SYSTEMS GRP-EASTERN DIV
77 - STREEY

NEEURAY, FA 02144

LITY ATTR MARSHAL CROSS

ILLINOIS, UNIVERSITY OF
DEPARTMENT OF ELECTRICAL ENGINEERING
URBANA, IL 61803

01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES

400 ARMY-NAVY DRIVE

ARLINGTON, VA 22202
01CY ATYIN J.M. AEIN
01CY ATTN HANS WOLFHARD
01CY ATTN JOEL BENGSTON

HsS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, N 07110

01CY ATTN TECHNICAL LIBRARY

JAYCOR
1401 CAMINO DEL MAR
DEL MAR, CA 92014
01CY ATTN S.R. GOLDMAN

JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

JOHNS HOPKINS ROAD

LAREL, M 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

LOCKHEED MISSILES & SPACE CO INC
P.0. BOX 504
SUNNYVALE, CA 94088

01CY ATTN DEPT 60-12

01CY ATTN D.R. CHWRCHILL

LOCKHEED MISSILES AND SPACE CO INC
3251 HAHOVER STREET
PALO ALTO, CA 94304
01CY ATTR MARTIN WALT DEPT 52-10
CiCY ATTN RICHMARD 6. JOMNSON DEPT §2-12
0iCY ATTN W.L. IMMOF DEPT 52-12
LiCY  ATTN D. CAUFKAN

ST e v

LAk SCIENCES CORP

r.G. BOX 7463

COLORADG SPRIRGS, CO 80933
01CY ATTN T. MEAGHER

LINKABIT CORP

10453 ROSELLE

SAn DIEGO, CA 92121
01CY ATTN IRWIN JACOBS
01CY ATTN 1. ROTHMUELLER

LOWELL RSCH FOUNDATION, UNIVERSITY OF
450 AIKEN STREET
LOWELL, MA 01854

01CY ATTN K. BISL

01CY ATTN B. REINISCH

M.1.T. LINCOLN LABORATORY
P.0. BOX 73
LEXINGTON, MA 02173
01CY ATTN DAVID M. TOWLE
01CY ATTN P. WALDRON
01CY ATTN L. LOUGHLIN
01CY ATTN D. CLARK
OICY ATTN J. DAVIS

MRTIN MRIETTA CORP
ORLANDO DIVISION
P.0. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFMER

MCOONNELL DOUGLAS CORPORATION
§301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATTN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R.W. HALPRIN
01CY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION

735 STATE STREET

SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
0I1CY ATTN W.F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN D. SAPPENFIELD
01CY ATTN R, BOGUSCH
01CY ATTN RALPH KILB
01CY ATTN R. HENORICK
01CY ATTN DAVE SOMWLE
01CY ATTN F. FAJEX
C1CY ATTN M. SCHEIBE
Y ATTN COMRAS L. LONGMIRE
T10V ATTN WARREN A, SCMLLET




NITRE CORPORATION, THE

P.u. BOx 208

BEDFORD, MA 01730
01CY ATTN JOHK MORGANSTERN
01CY ATTH G. HARDING
01CY ATTN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
01CY ATTN W. HALL
01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
1456 CLOVERFIELD 8LVD.
SANTA MONICA, CA 90404

01CY ATTN E.C. FIELD R

PENNSYLVANIA STATE UNIVERSITY
IONISPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASSIFIED TO THIS ADORESS)
O1CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
442 MARRETT ROAD
LEXINGTON, MA 02173
01CY ATTN IRVING L. KOFSKY

PHYSICAL OYNAMICS INC.
P.0. BOX 3027
BELLEVUE, WA 98009
01CY ATTN E.J. FREMOUW

PHYSICAL DYNAMICS INC.
P.0. 80X 1069
BERKELEY, CA 94701
01CY ATTN A, THOMPSON

R & D ASSOCIATES

P.0. BOX 9695

WARINA DEL REY, CA 90291
01CY ATTN FORREST GILMORE
01CY ATTN BRYAN GABBARD
01CY ATTN WILLIAM B. WRIGHT R,
01CY ATTN WILLIAM J. KARZAS
01CY ATTN ROBERT F. LELEVIER
01CY ATTN M. ORY
01CY ATTN C. MACDONALD
01CY ATTN R. TURCC

- AT TR [T AT

RALD CORPORATION, THE

1700 MAIN STREET

SAKTA FORICA, CA 90406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RIVERSIDE RESEARCH INSTITUTE
80 WEST END AVENUE
NEW YORK, NY 10023

01CY ATTN VINCE TRAPANI

SCIENCE APPLICATION, INC.

P.0. BOX 2351

LAJOLLA, CA 92038
01CY ATTN LEWIS M, LINSON
01CY ATTH DANIEL A, HAMLIN
01CY ATTN D. SACHS
01CY ATTN E.A. STRAKER
01CY ATTN CURTUS A, SMITH
01CY ATTN JACK MCOOUGALL

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBLRY, MA 01776
01CY ATTN BARBARA ADAMS

SCIENCE APPLICATIONS, INC.
HUNTSVILLE DIVISION
2109 W, CLINTON AVENUE
SUITE 700
HUNTSVILLE, AL 35805
01CY ATTN DALE H. DAVIS

SCIENCE APPLICATIONS, IENPQATEII
8400 WESTPARK DRIVE
MCLEAN, VA 22101

OICY ATTN J. COCKAYNE

SCIENCE APPLICATIONS, INC.

80 MISSION ODRIVE

PLEASANTON, CA 94566
01CY ATTN S2

SRI INTERNATIONAL

333 RAVENSNOOD AVENUE

MENLO PARK, CA 94025
01CY ATTN DONARD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN 6. SMITH
01CY ATTN L.L. COBB
O1CY OAVID A. JOHNSOM
01CY ATTN WALTER 6. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN M. BARON
CICY ATTN R. LIVIRGSTONR
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01CY
c1CY
01Cy
C1Cy
01Cy
s 01CY
o1cy
o1cy

ATTN RAY L. LEADABRAND

ATTN C.
ATTN G.
ATTH J.
ATTh R.
ATTK V.
ATTN D.
ATTN R.

CARPENTER
PRICE
PETERSON
HAKE, JR.
GONZALES
MCDANIEL
TSUNODA

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE

BEDFORD, MA

01730

5 01CY ATTN W.P. BOQUIST
: UNIVERSITY OF TOKYO

ISAS

KOMABA, MEGURO-KU
TOKYO, JAPAN
01CY ATTN DR. K.I. OYAMA

MAX-PLANCK~ INSTITUT
FUR PHYSIK UND ASTROPHYSIK
INSTITUT FUR EXTRATERRESTRICHE PHYSIK
8046 GARCHING B. MUNCHEN, GERMANY
0I1CY ATTN PROF. GERHARD HAERENDEL

TRt DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R.K. PLEBUCH
01CY ATTN S. ALTSCHULER
1 01CY ATTN D. DEE

VISIDYNE, INC.
19 THIRD AVENUE
NORTH WEST INOUSTRIAL PARK

BURLINGTON, MA

01802

01CY - ATTN CHARLES HUMPHREY
01CY ATTN J.W. CARPENTER




IONOSPHERIC MODELING DISTRIBUTIOQN LIST
UNCLASSIFIED OKLY

PLEASE DISTRIBUTE ONE COPY (EXCEPT WHERE NOTED COMANDER

OTHERWISE) TO EACH OF THE FOLLOWING PEOPLE: NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
ADVANCED RESEARCH PROJECTS AGENCY (ARPA) WASHINGTON, D.C. 20360
STRATEGIC TECHNOLOGY OFFICE
ARLINGTON, VA 22217 DR. T. CZUBA
: CAPT DONALD M. LEVINE HARVARD UNIVERSITY
HARVARD SQUARE
: ] NAVAL RESEARCH LABORATORY CAMBRIDGE, MASS. 02138
; WASHINGTON, D.C. 20375
: DR. M. B. McELROY
{ DR. R. MEIER - CODE 4141 OR. R. LINDZEN
: m. TIMOTHY COFFEY - CODE 4000
! DR. S. QSSAKOM - CODE 4780 PENNSYLVANIA STATE UNIVERSITY
. OR. J. GOODMAN - CODE 4180 UNIVERSITY PARK, PA 16802
DR. E. SZUSZCZEWICZ - CODE 4187 (50 COPIES)
OR. J. S. NISBET
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY R. P. R. ROHRBAUGH
NOAA OR. D. E. BARAN
BOULDER, CO 80302 OR. L. A, CARPENTER
OR. M. LEE
DR. A. GLENN JEAN R. R. DIVANY
DR. G. W. ADAMS R, P. BENNETT
DR. D. N. ANDERSON OR. E. KLEVANS
DR. K. DAVIES
OR. R. F. DONNELLY UNIVERSITY OF CALIFORNIA, LOS ANGELES
405 HILLGARD AVENUE
AIR FORCE GEOPHYSICS LABORATORY LOS ANGELES, CA 90024
HANSCOM AIR FORCE BASE, MA 01731
R. R. STENZEL
R. F. V. CORONITI
DR. T. ELKINS R. C. KENNEL
OR. W. SWIDER OR. W. GEKELMAN
MRS. R. SAGALYN
0R. J. M, FORBES UNIVERSITY OF CALIFORNIA, BERKELEY
OR. T. J. KENESHEA BERKELEY, CA 94720
DR. J. AARONS
R. R, NARCIS] DR. M. HUDSON
OFFICE OF NAVAL RESEARCH UTAH STATE UNIVERSITY
800 NORTH QUINCY STREET 4TH AND 8TH STREETS
ARLINGTON, VA 22217 LOGAN, UTAH 84322
U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT OR. P. M. BANKS
CENTER BALLISTIC RESEARCH LABORATORY DR. R. HARRIS
ABERDEEN, MD 21001 OR. V. PETERSON
R. R. MEGILL
OR. J. HEIMERL R. K. BAKER

R. R. WILL JAMSON
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COPRELL UNTVERSITY
ITheCA, N.Y. 14850

DR, k. E. SWARTZ
DR. R. SUDAN
DR. 0. FARLEY
(R. M. KELLEY

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771

OR. S. J. BAUER/CODE 600
OR. R. HARTEL/CODE 621
DR. R. GOLDBERG/CODE 912
OR. S. CHANDRA

DR. K. MAEDO

DR. R. BENSON/CODE 621

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, N.J. 08540

DR. F. PERKINS
DR. E. FRIEMAN

INSTITUTE FOR DEFENSE ANALYSIS

400 ARMY/NAVY DRIVE
MRLINGTON, VA 22202

OR. E. BAUER

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742

DR. K. PAPADOPOULOS
R. E. OTT

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213

DR. N. ZABUSKY
R. M. BIONDI

DEFENSE DOCUMENTATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314

(12 COPIES IF OPEN PUBLICATION
OTHERWISE 2 COPIES) 12 CY ATTN TC

URIVERSITY OF CALIFOPMIA
LOS ALAWOS SCIEKTIFIC LABGRATORY
J-10, MS-664 ,

LOS ALAMOS, NEW MEXICO £7545

OR. M. PONGRATZ
DR. D. SIMONS
DR. 6. BARASCH
OR. L. DUNCAN

OFFICE OF ASSISTANT SECRETARY OF NAVY
FOR RESEARCH, ENGINEERING AND SYSTEMS
PENTAGON RM 4D745

Washington, DC 20350

03 CY Attn Dr. H. Rabin

Deputy Assistant
Sec. of Navy
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